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The influence of the atomic-scale inhomogeneities of the pairing interaction strength on the superconducting
order parameter and the conductance spectra measurable by scanning tunneling microscopy �STM� is studied
in the framework of weak-coupling Bardeen-Cooper-Schrieffer �BCS�-like theory for two-dimensional lattice
model. First of all, it is found that the inhomogeneity having the form of atomic-scale regions of enhanced pair
interaction increases the ratio of the local low-temperature gap in differential conductance spectra to the local
temperature of vanishing the gap 2�g /Tp. Even in the framework of mean-field treatment, this ratio is shown
to be larger than the one corresponding to the homogeneous case. It is shown that the effect of thermal phase
fluctuations of the superconducting order parameter can further increase this ratio. Taking them into account in
the framework of a toy model, we obtained the ratio 2�g /Tp to be �7−8. It is found that the additional
atomic-scale hopping element disorder and weak potential scatterers, which can also take place in cuprate
materials, have no considerable effect on the statistical properties of the system, including the distribution of
the gaps, Tp and the ratio 2�g /Tp. The second consequence of the atomic-scale order parameter inhomogeneity
is the anticorrelation between the low-temperature gap and the high-temperature zero-bias conductance. The
obtained results could bear a relation to recent STM measurements.
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I. INTRODUCTION

Nanoscale inhomogeneities have been widely observed
in the high-temperature superconductor Bi2Sr2CaCu2O8+x
�BSCCO� and have generated intense interest.1–6 In particu-
lar, the spectral gap in the local density of states �LDOS� has
been investigated by scanning tunneling microscopy �STM�.
It was found that deeply in the superconducting state the
low-temperature gap varies by a factor of 2 over distances of
20–30 Å. Recently the existence of very similar picture of
inhomogeneities in La2−xSrxCuO4 has been also reported.7

Several scenarios have been proposed to understanding this
electronic inhomogeneity. First of all, it was speculated that
poorly screened electrostatic potentials of the dopant atoms
vary a doping concentration locally, giving rise to the gap
modulations.8–11 Alternatively, these inhomogeneities are as-
sociated with a competing order parameter, such as spin12–14

and orbital antiferromagnetism,15 charge density wave,16 or
pair density wave.17 Further, the positive correlations be-
tween the inhomogeneities and positions of the dopant atoms
have been observed by STM on the optimally doped
BSCCO.5 After that it was proposed by Nunner et al. in Ref.
18 that the dopant atoms modulate the pairing interaction
locally on the atomic scale. The LDOS calculated in the
framework of this model is in good agreement with the key
characteristics of the experimental spectra. However, there is
an alternative picture of the inhomogeneity origin based on
the local variation of the doping concentration, which ex-
plains why the correlations are rather weak.11

On the other hand, in the high-Tc superconductors a par-
tial gap in the LDOS exists for a range of temperatures above
Tc.

19 There is no consensus up to now if this gap is due
to pairing without phase coherence, a competing order, or
proximity to the Mott state.20–23 The inhomogeneities de-
scribed above complicate the situation. Only very recently

the spatially resolved STM measurements of gap formation
in BSCCO samples with different Tc corresponding to hole
concentrations from 0.12 to 0.22 were performed.24 For a
range of doping from 0.16 to 0.22 they have found that gaps
nucleate in nanoscale regions above Tc and proliferate as the
temperature is lowered, evolving to the spatial distribution of
gap values in the superconducting state. It was observed ex-
perimentally that overdoped and optimally doped samples
have identical gap-temperature scaling ratios. Taking into ac-
count this finding together with the fact that in the overdoped
samples pseudogap effects are believed to be weak or absent
and consistency of the low-temperature spectra with a
d-wave superconducting gap, Gomes et al.24 have interpreted
the gaps above Tc as those associated with pairing. Despite
the inhomogeneity, every pairing gap develops locally at the
temperature Tp, following the relation 2�g /Tp=7.9�0.5 in
wide range of doping from overdoped to optimally doped
samples. This local pairing criterion seems to fail only in
underdoped samples and density of states �DOS� indicates
the presence of another phenomenon, possibly unrelated to
pairing.

It is well known that in the framework of weak-coupling
Bardeen-Cooper-Schrieffer �BCS� theory with homogeneous
pairing amplitude, the ratio 2�g /Tc is 3.5 for s-wave super-
conductors and approximately is in the interval 4.3–4.5 for
d-wave superconductors �this value depends slightly on the
particular tight-binding parameters�. The ratio 2�g /Tp
�4.7–5.2 for d-wave case is a bit higher due to thermal
smearing of the measured dI /dV curves. It is worth to note
that in the framework of strong-coupling theory, the ratio
2�g /Tc is in the range 3.5–5 for s-wave superconductors, but
becomes dependent on �g and can reach the values �10 for
d-wave pairing case.25

In the present paper we show that if the superconducting
order parameter �OP� is modulated locally on the atomic
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scale, the ratio 2�g /Tp strongly increases in the framework
of conventional weak-coupling theory. In addition, this inho-
mogeneity inevitably leads to the anticorrelation between the
low-temperature gap and the high-temperature zero-bias con-
ductance. This findings resemble the results observed in re-
cent STM experiments.24,26 The most natural way to obtain
the atomic-scale modulations of the OP is to assume the
atomic-scale modulations of the pairing interaction strength,
as it was proposed by Nunner et al.18 We do not mean any
particular mechanism of pairing. Our analysis is phenomeno-
logical, and the conclusions are independent on the underly-
ing pairing mechanism and the particular course of the local
pair-interaction modulations. Here we only focus on the ef-
fect of the inhomogeneity on some observable properties of
cuprate superconductors. As it is discussed below, if this in-
homogeneity has the form of atomic-scale regions of en-
hanced pair interaction, the ratio 2�g /Tp increases even in
the framework of mean-field treatment. However, the effect
only takes place if the total area of these regions is less than
the area occupied by the background interaction. The last
condition is essential. If this is not the case, that is the total
area of the enhanced pairing regions is of the order of or
larger than the area of the background pairing, the discussed
ratio is reduced or, at least, remains equal to the homoge-
neous one. It was demonstrated in a number of papers. In
particular, the attractive Hubbard model with inhomogeneous
pairing amplitude was studied,27 and it was shown that the
superconducting critical temperature can be significantly in-
creased in such a system as compared to a uniform system
corresponding to the pairing interaction averaged over the
system. The zero-temperature superconducting OP increases
also, but in a less degree than the critical temperature, and
results in reducing the ratio 2�g /Tc. The reduction of the
ratio of the energy gap to the critical temperature due to the
inhomogeneity of coupling constant was also obtained for
dirty s-wave superconductors.28 The potential disorder, as
was demonstrated,29 also diminishes this quantity because
the superconducting OP is suppressed on the distance of the
order of the coherence length around an impurity and, con-
sequently, the total area of the enhanced OP regions domi-
nates.

Further, it is physically reasonable that the phase of the
superconducting OP should fluctuate from one region of en-
hanced pairing amplitude to another in such an inhomoge-
neous situation, especially for short coherence length cuprate
superconductors. In particular, the state with antiferromag-
netic and nanoscale superconducting domains exhibiting ran-
domly distributed phases was recently proposed30 to account
for the formation of the Fermi arcs, observed in the
pseudogap phase of the underdoped cuprates.31–33 The exis-
tence of the thermal phase fluctuations of the superconduct-
ing clustered state in disordered s-wave superconductors and
their role in the superconductor-insulator transition were
demonstrated.34 In the present paper we show that thermal
phase fluctuations can significantly suppress the temperature
Tp and, consequently, increase the ratio 2�g /Tp. Even in the
framework of very simple model we study here, this quantity
reaches the value �7–8, comparable to the experimentally
observed.24

The influence of the additional disorder such as the
atomic-scale inhomogeneities of the hopping matrix ele-

ments and weak potential scatterers is also considered. It is
shown that while they can affect the shape of low-
temperature LDOS in the system, the properties of interest:
gap’s distribution, Tp’s distribution, and the distribution of
the ratio 2�g /Tp remain qualitatively unchanged.

The paper is organized as follows. Sec. II is devoted to the
detailed mean-field consideration of the problem. The model
mean-field Hamiltonian we use and the outline of the
T-matrix method are introduced in Sec. II A. The single pair-
interaction perturbation is studied and the physical reasons
for the enhancement of the ratio 2�g /Tp are discussed in Sec.
II B. Sec. II C is devoted to the mean-field treatment of the
interaction between many OP scatterers. The effect of addi-
tional weak potential and hopping element inhomogeneities
is investigated in Sec. II D. The influence of the thermal
phase fluctuations on the quantities under consideration is
discussed in Sec. III. In Sec. IV it is demonstrated that the
atomic-scale OP inhomogeneity leads to the anticorrelation
between the local low-temperature gap and the value of zero-
bias conductance at higher temperatures. The conclusions are
presented in Sec. V.

II. MEAN-FIELD TREATMENT

A. Model and method

We consider the following Hamiltonian on a square lat-
tice:

Ĥ = − �
ij,�

tijci�
† cj� − �

i,�
�ci�

† ci� + �
�ij�

��ijci↑
† cj↓

† + h . c .� ,

�1�

where ci��ci�
† � stands for an electron annihilation �creation�

operator at site i with spin �. �ij indicates summation over
neighboring sites, while ��ij� denotes the summation over
nearest neighbors. tij is the hopping integral between sites i
and j. We set tij to be t=1 for the nearest-neighbor hopping
and all the energies are measured in units of t throughout the
paper. The nearest-neighbor d-wave OP should be deter-
mined self-consistently: �ij =−gij�ci↓cj↑−cj↓ci↑�.

In order to analyze the inhomogeneous pairing correla-
tions in the framework of the mean-field Hamiltonian �Eq.
�1��, we exploit the fully self-consistent T-matrix technique
for Gor’kov Green’s functions. Starting from the Gor’kov
equations the normal and anomalous Green’s functions are
expressed in terms of the homogeneous background Green’s

functions Ǧij
0 and the T matrix, which contains all the inho-

mogeneities. Then the full Green’s function, which depends
on two space indices i and j, takes the form

Ǧij = Ǧij
0 + �

k,m
Ǧik

0 ŤkmǦmj
0 . �2�

Here Ťkm=−�n�M̌−1�knV̌nm, M̌km=�km+�nǦkn
0 V̌nm.. V̌km is the

perturbation matrix including all the inhomogeneities. All
Green’s functions and T matrices are 4�4 matrices in the
direct product of spin and particle-hole spaces, indicated by

the symbol ˇ . �̂i and �̂i are Pauli matrices in particle-hole and
spin spaces, respectively. The summation is taken over all
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the sites, where the OP �km=�km
0 +��km differs from the

background value �km
0 . �km

0 is assumed to be of d-wave type,

that is, �ii�â
0 =−�

ii�b̂

0
=�0. â and b̂ are basis vectors of the

square lattice. We set the lattice constant a to be equal to
unity.

OP is to be calculated from the self-consistency equation

�ij = gijT�
	n

Tr4��̂−i�̂yǦij�	n�� , �3�

where �̂−= ��̂x− i�̂y� /2 and 	n is the fermionic Matsubara fre-
quency. The energy cutoff 		n	
4 is used in Eq. �3� for the
technical convenience. We have checked that the particular
value of the cutoff energy �if it is considerably larger than the
maximal value of the OP� does not change qualitatively the
results and only slightly varies the OP quantitative values.
Equations �2� and �3� allow us to find the OP �ij numerically.
Making use of the outlined technique we consider a square
of the size n�n, immersed into an infinite lattice carrying
the homogeneous OP �ij

0 , as an inhomogeneity described by
T-matrix.

B. Single perturbation

In general, the T matrix can describe inhomogeneities of
all the parameters entering the equations: hopping elements,
chemical potential, or self-energies. For the moment we only
focus on the off-diagonal self-energy inhomogeneity and

therefore V̌km=��kmi�̂2i�̂2. We begin by considering a single
perturbation of the pairing interaction. Two different models
for the individual pairing perturbation are represented in the
paper. Model �a� describes the region of the enhanced pair
interaction emanating from a site i by Yukawa-type potential
gij =gb+�gfij, where gb corresponds to a background inter-
action and f ij =�sexp�−rijs /�� /rijs. rijs=
rijs

�ab�2+z2 is the dis-
tance between the center of the bond connecting the sites i
and j and the source of the pairing interaction perturbation
beyond the plane. Here z is the distance between the CuO2
plane and the source of the perturbation and rijs

�ab� denotes the
distance in the plane. Model �b� supposes that the pair inter-
action is considerably enhanced on a plaquette and has a
long weak tail beyond this plaquette: gij =gb+u1 if the bond
ij belongs to the chosen plaquette and gij =gb+u2 / �r0,ij

2 +z2�
if the bond ij is beyond this plaquette. Here, r0,ij is the dis-
tance between the center of the chosen plaquette and the
center of the bond ij. By considering a number of different
models for the single perturbation, we have checked that the
results do not depend qualitatively on the particular shape of
the perturbation and are only controlled by its effective width
and height. The tight-binding model parameters taken to ob-
tain the normal quasiparticle dispersion are the following:
the next-nearest neighbor hopping t�=−0.3 and the chemical
potential �=−1 correspond to the normal state background
of model �a� and t�=−0.35 and �=−0.8 describe the normal
background of model �b�. Both sets of the parameters give
approximately the same low-energy dispersion and adjust to
qualitatively reproduce experimentally measured Fermi sur-
face of BSCCO near optimal doping. However, they result in
quite different quasiparticle dispersions for the energies,

which have the absolute value of the order of superconduct-
ing gap, and, in particular, differ by the energy location of
the normal state van Hove singularity 	vH=−�+4t�. This
fact leads to essential difference in the shape of the LDOS
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FIG. 1. �a� Low-temperature �T=0.03� distribution of the site-
averaged OP. �b� Low-temperature �T=0.03� gap map. �c� Tp map.
�d� The space profiles of the ratio 2�g /Tp �solid line� and the site-
averaged OP �dashed line� calculated along the horizontal line
drawn through the center of the perturbation in panel �a�. The left
�right� vertical axis corresponds to the ratio 2�g�i� /Tp�i� �supercon-
ducting order parameter�. All the pictures correspond to the single
perturbation described by model �a� �see text� with gb=0.51, �g
=2.09, �=1.5, and z=1.5. The parameters � and z are measured in
units of the lattice constant a.
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curves, but does not influence qualitatively the statistical
properties considered here: gap ��g� distribution, the local
temperature of vanishing the gap �Tp� distribution, and the
ratio 2�g /Tp. We comment on the role of the particular set of
tight-binding model parameters in more detail below. Mak-
ing use of the T-matrix approach outlined above, we calcu-
late the superconducting OP, LDOS, and Tp for the two in-
homogeneous patterns with a single perturbation described
by models �a� and �b�, respectively.

The resulting space distributions of low-temperature site-
averaged OP �i���i,i+â+�i,i−â+ 	�i,i+b̂	+ 	�i,i−b̂	� /4 are pre-
sented in Figs. 1�a� and 2�a� for the models �a� and �b�,
respectively.

STM technique measures the local differential conduc-
tance, and the thermally smeared LDOS, described by the
expression

dI/dV � �
−�

�

d	
df�	 + eV�

dV
i�	,T� , �4�

can be extracted from these measurements. We set 	e	=1
throughout the paper. In the above expression

i�	,T� = − �1/��Im Gii
R�	,T� �5�

is the LDOS, f�	� is Fermi distribution function, and V is
voltage applied between the STM tip and the sample. For the
homogeneous situation the distance between the coherence
peaks 2�g in the low-temperature conductance spectra is di-
rectly connected to the low-temperature OP by the simple
relation �g=��0�T�, where the parameter � is slightly model
dependent. In our case �=4.0 for model �a� and �=3.6 for
model �b�.

For an inhomogeneous system, where the characteristic
size of the patch ��, there is no any direct simple relation-
ship between the local OP and the local gap �g. One can only
conclude from the numerical calculations6,18 that for regions,
where the OP is enhanced from the background, the gap gets
wider and the peak height is suppressed compared to the
average value. It is worth noting that, unlike the homoge-
neous situation, this peak does not always represent the
maximal superconducting gap on the Fermi surface, but in
some cases originates from the spectral weight transfer from
the nearby van Hove singularity due to the Andreev scatter-
ing processes. Otherwise, if the OP in a cluster is less than
that one in the background, the narrow and high Andreev
resonant peaks develop in the cluster region resulting in di-
minishing of the gap region. For this reason we investigate
not only the OP distribution, but also the experimentally
measurable thermally smeared LDOS, which has a maxi-
mum at V=�g. For models �a� and �b� of the single pertur-
bation the corresponding low-temperature gap maps are rep-
resented in Figs. 1�b� and 2�b�, respectively.

Experimentally24 the temperature Tp�i� of the gap disap-
pearing for the particular location in the sample has been
determined using the criterion dI /dV�V=0��dI /dV �for all
V�0�. Using the above criterion we calculated the distribu-
tion Tp�i� from the thermally smeared LDOS curves. The
corresponding Tp maps for the single perturbations described
by models �a� and �b� are represented in Figs. 1�c� and 2�c�,

respectively. It can be seen from Figs. 1 and 2 that while the
space distribution of the superconducting OP mainly follows
that one of the pairing interaction strength due to the local
multiplication of the anomalous Green’s function in the self-
consistency Eq. �3� by the coupling constant, LDOS and Tp
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FIG. 2. Panels �a�-�d� represent the same quantities as in Fig. 1,
but correspond to the single perturbation described by the model �b�
�see text� with gb=0.59, u1=1.00, u2=0.25, and z=0.5.
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are essentially nonlocal �on the atomic scale� quantities with
the characteristic size of order of �s determined by the scale,
where the Green’s functions change considerably. This is
valid for the both considered models, however the nonlocal-
ity is much less pronounced for model �b�. The reason is that
the pair interaction perturbation is spikier in this case as
compared to model �a�. Due to its very small effective width
the perturbation �b� cannot contribute considerably to the
Green’s function and, consequently, to the LDOS anywhere
in space except for its own plaquette. The reason for en-
hancement of the gap at this plaquette is spectral weight
transfer from the nearby van Hove singularity, which will be
discussed in detail later.

The ratios 2�g�i� /Tp�i� calculated along the horizontal
lines drawn through the centers of the perturbations in Figs.
1�a� and 2�a� for the model samples considered above are
plotted in Figs. 1�d� and 2�d�, together with the spatial pro-
files of the superconducting OP along the same cuts. It is
seen that this ratio is considerably enhanced in comparison
with the homogeneous situation. For model �a� the area of
the enhancement is larger than the characteristic size of the
superconducting OP �and coupling constant� perturbation.
This is due to the above-mentioned gap and Tp nonlocality
and leads to the increase in the ratio over the entire sample in
the situation with many off-diagonal scatterers in spite of the
fact that only smaller part of the sample is occupied by the
enhanced coupling constant regions. On the contrary, for
model �b� the two profiles practically coincide. Note that the
maximal ratio is very high ��14� for this model. The physi-
cal reasons for this fact will be given later. The averaged
ratio �2�g�i� /Tp�i�� calculated over the region of the size,
which approximately corresponds to the average distance be-
tween the centers of enhanced pairing regions in the situation
with many individual perturbations considered below, is
equal to 7.6 and 8.5 for models �a� and �b�, respectively.

There are two main physical reasons for the enhancement
of the ratio 2�g /Tp for the single perturbation considered
above. First of all, small as compared to superconducting
coherence length, perturbations cannot maintain supercon-
ductivity by themselves and only do this due to the super-
conductivity in the bulk. Although the value of the zero-
temperature OP strongly increases when the height of the
perturbation grows, at finite temperatures where the bulk OP
vanishes, the pairing correlations in the small area go to zero
abruptly. To illustrate this, the dependence of the site-
averaged OP on temperature is presented in Fig. 3. Figures
3�a� and 3�b� correspond to models �a� and �b� described
above. The bottom thin line represents the temperature de-
pendence of the background OP generated by the coupling
constant gb. The bold solid curves correspond to the tempera-
ture dependence of the site-averaged OP for the sites marked
by the appropriate numbers in Figs. 1�a� and 2�a�, respec-
tively. Although the superconducting OP vanishes at the criti-
cal temperature denoted by Tx over the entire inhomoge-
neous sample simultaneously, as it should be in the mean-
field approximation, the pairing correlations in the small area
reduce abruptly near the temperature of the vanishing of the
bulk OP corresponding to the coupling constant gb. Then
only the non-BCS-like tails extend up to Tx. In other words,
the OP inside the area of the enhanced pair interaction dis-

appears with temperature faster than the bulk OP having the
same low-temperature value. To demonstrate this, the tem-
perature dependence of the bulk OP having the same low-
temperature value as in the center of the perturbation �curves
marked by 1� is depicted by the upper thin lines in Figs. 3�a�
and 3�b�. Note that for model �b� the abrupt suppression of
the OP near the background critical temperature Tb is seen
more clearly due to smaller effective size of the perturbation.

The temperatures Tp for the given space locations are
marked by the filled circles on the corresponding ��T�
curves in Figs. 3�a� and 3�b�. It is seen that even for the
homogeneous case Tp is slightly lower than the critical tem-
perature �see the bottom thin line� due to the thermal smear-
ing of the measured differential conductance according to the
formula �4�. Consequently, the bulk ratio 2�g /Tp is a bit
higher than the ratio 2�g /Tb. These ratios are dependent
slightly on the particular coupling constant and tight-binding
parameters. For model �a� we consider, they have the follow-
ing values: �2�g /Tb��a�=4.4 and �2�g /Tp��a�=5.0, while for
model �b�: �2�g /Tb��b�=4.2 and �2�g /Tp��b�=4.7. For the in-
homogeneous situation with the single perturbation, the dif-
ference between Tx and Tp �Tp is now position dependent� is
much more pronounced. This results from the discussed
above non-BCS-like behavior of the OP on temperature: for
the long OP tails, taking place for temperatures higher than
the background critical temperature, the gap is too small and
easily smeared out by high enough temperature. Although at
the center of the perturbation the value of the superconduct-
ing OP is still high enough at the temperatures of the order of
Tp, the area occupied by this enhanced OP is small as com-
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FIG. 3. Dependence of the site-averaged OP on temperature for
the single perturbation. The thin bottom line corresponds to bulk
order parameter generated by the background coupling constant.
The bold solid curves represent the temperature dependence of the
superconducting order parameter for the sites marked by the appro-
priate numbers in Figs. 1�a� and 2�a�. The upper thin line is the
temperature dependence of the bulk OP with the same zero-
temperature value as in the center of the perturbation �curve marked
by 1�. Panels �a� and �b� correspond to models �a� and �b�,
respectively.
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pared to �s
2. Consequently, the amplitude of the correspond-

ing peak in the LDOS is low and again can be easy washed
out by temperature. These reasons work more efficiently for
spikier perturbations. This is clearly seen in Fig. 3, where the
difference between Tp and Tx is more pronounced for model
�b�.

When the size of the pairing interaction perturbation in-
creases, Tx grows considerably, while the zero-temperature
value of the superconducting OP in the perturbation region
rises only slightly. Naturally, when the size of the enhanced
pairing area becomes of the order of a few superconducting
coherence lengths, Tx→Tb corresponding to the coupling
constant gb+�g and the bulk value of 2�g /Tp should be re-
stored at the center of the cluster. For the s-wave pairing case
and cluster width comparable to or larger than �s, the reduc-
tion of the critical temperature of the cluster having the pair-
ing potential g1 �in comparison to the bulk value correspond-
ing to g1� due to the proximity to the background with the
pairing potential g0
g1 has been studied in Ref. 35 in the
framework of quasiclassical Usadel equations. As it is seen
from the above picture, the OP inhomogeneity of the size
comparable to or larger than �s cannot give rise to large
enough ratios 2�g /Tp and spikier atomic-scale inhomogene-
ities are more favorable.

The second reason for the ratio 2�g /Tp to get larger is the
following. As it was already mentioned above, in the inho-
mogeneous situation with an atomic-scale single perturbation
of the large enough strength, the main peak in LDOS does
not represent the maximal local superconducting gap on the
Fermi surface, but originates from the spectral weight trans-
fer from the nearby van Hove singularity due to the Andreev
scattering processes. For the tight-binding parameters we
consider, the van Hove singularity energy in the homoge-
neous system is approximately described by the formula
	vH=−
�−�+4t��2+�max

2 , where �max is an effective maxi-
mal superconducting gap on the Fermi surface. The pro-
cesses of Andreev scattering from the inhomogeneity result
in appearing of the symmetrical with respect to Fermi energy
peak in LDOS. The examples of low-temperature LDOS
curves exhibiting such a feature are shown in Fig. 4. Figures
4�a� and 4�b� correspond to models �a� and �b�, respectively.
It is seen that for model �a�, where the normal state van Hove
singularity is very close to the Fermi energy �and, conse-
quently, the van Hove singularity peak in the superconduct-
ing state is close to the superconducting coherence peak�, the
above-mentioned transfer of the spectral weight leads to
small enough increase in the gap �g. The shape of the result-
ing peak is close to the shape of a superconducting coherence
peak because of partial overlapping of the van Hove singu-
larity and superconducting coherence peak in the bulk. At the
same time for model �b�, where the van Hove singularity is
more distinct from the superconducting coherence peak in
the bulk, the clearly seen spectral weight transfer results in
considerable increase in the gap �g. However, this mecha-
nism of a gap enhancement is very local, as it is seen in Fig.
4�b�. This is the reason for the appearance of a very high gap
just at the plaquette occupied by the perturbation in Fig. 2�b�.
However, the shape of the resulting peak is strongly dis-
torted. It is worth to note that the LDOS curves represented
here are related to the single perturbation. For the many in-

dividual perturbations discussed below, the curves have more
resemblance to the experimentally measured LDOS spectra.

C. Many OP scatterers

Now we turn to discussion of more realistic situation,
when many pair interaction scatterers are present in the
sample. We have considered a 22�22-site square as a per-
turbation described by the T matrix. We again represent here
two models. In the both models individual perturbations are
randomly distributed in the square with the concentration n
=0.07 �here concentration means the number of individual
scatterers divided by the total number of sites in the square�.
In model �A� the individual perturbations have the same
shape as in the single perturbation model �a�. Model �B�
corresponds to the individual perturbations described by
model �b�. The tight-binding parameters describing the nor-
mal state quasiparticle dispersion coincide for models �a� and
�A� so as for models �b� and �B�, respectively. The numerical
values of the parameters, characterizing the individual scat-
terers, are taken to give the same low-temperature values of
superconducting OP in the center of the perturbation and in
the background as for the corresponding single perturbation
model �see captions to Figs. 5 and 6 for the particular val-
ues�.

Since we consider the finite-size square as a perturbation
described by T matrix, the finite-size effects will affect the
results. However the appropriate choice of the homogeneous
superconducting OP �0 outside the square helps us to mini-
mize the influence of the square boundary. By considering a
larger 30�30-site square we have checked that if the bulk
OP outside the square is taken to be equal to the average
background value of the OP in the square, the error in cal-
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FIG. 4. Low-temperature �T=0.03� LDOS curves taken for a
number of sites from the center of the perturbation �black solid
curve� to the background �gray line�. The curves correspond to the
sites marked by the appropriate numbers in Fig. 1�a� and Fig. 2�a�.
Panels �a� and �b� correspond to models �a� and �b�, respectively.
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culating OP, gap, and Tp becomes less than 5% at the dis-
tance �4 sites from the boundary and lessens further toward
the center of the square. For this reason the 14�14 central
region of the square is taken into account in calculating the
statistical properties of the system.

The resulting space distributions of low-temperature site-
averaged OP, low-temperature gap maps, and Tp maps are
demonstrated in Figs. 5 and 6 for models �A� and �B�, re-
spectively. It is worth to note that the temperature evolution
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FIG. 5. �a� Low-temperature �T=0.05� distribution of the site-
averaged OP for model �A�. �b� Low-temperature gap map. �c� Tp

map. �d� Histogram of 2�g�i� /Tp�i� values. The parameters describ-
ing a perturbation are the following: gb=0.05, �g=2.72, �=z=1.5.
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FIG. 6. �a� Low-temperature �T=0.03� distribution of the site-
averaged OP for model �B�. �b� Low-temperature gap map. �c� Tp

map. �d� Histogram of 2�g�i� /Tp�i� values. The individual pertur-
bation and the background are described by the following param-
eters: gb=0.25, u1=1.16, u2=0.25, and z=0.5.
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of OP space distribution was already discussed in Ref. 36, so
we do not focus here on this aspect. The space distributions
of low-temperature OP are represented in Figs. 5�a� and 6�a�.
As it was described earlier for the single perturbation, the
spatial profile of the OP inhomogeneity mainly follows that
one of the coupling constant, that is, the characteristic scale
of the corresponding inhomogeneity is �2 atomic sites.
However, due to discussed above fact that the deviation of
the Green’s function from the bulk value is spread over a
wider space region than the superconducting OP, the gap and
Tp inhomogeneities are more smooth, and the characteristic
size of the patches in the gap and Tp maps is of the order of
4–5 atomic sites for model �A� and �3 atomic sites for
model �B�. For model �A� the size of a patch is roughly in
accordance with the superconducting coherence length �s,
while for model �B� it is somewhat smaller due to very spiky
character of the perturbation.

The probability distributions to find the particular value
for 2�g�i� /Tp�i� in our model samples are plotted in Figs.
5�d� and 6�d�. It is seen that the distribution for model �A� is
quite narrow. The reason is that the space profile of the ratio
2�g /Tp is broadened and flattened as compared to the OP
space profile, as it was demonstrated in Fig. 1�d� and dis-
cussed in the context of the single perturbation. For model
�B� the distribution is wider and exhibits a long tail of very
high ratios for a small part of sites. The reason for this fact
was discussed in the context of the single perturbation.

The average values of the ratio 2�g�i� /Tp�i� for models
�A� and �B� are 5.4 and 5.6, respectively. These values are
considerably less than the ones for the appropriate single
perturbations, described by models �a� and �b� �as it was
discussed earlier, for the single perturbation the ratio
�2�g�i� /Tp�i�� averaged over the region �l2, where l corre-
sponds to the average distance between the centers of en-
hanced pairing regions for the appropriate many scatterers
model, equals to 7.6 and 8.5 for models �a� and �b�, respec-
tively�. Although the mean-field ratios for many scatterer
models exceed the corresponding bulk ratios 2�g

A,av /Tp
A,av

=5.2 and 2�g
B,av /Tp

B,av=4.8, this increase is quite small as
compared to the single perturbation, especially for model
�A�. Here the homogeneous ratios 2�g

A�B�,av /Tp
A�B�,av are cal-

culated for the coupling constants, which give the same zero-
temperature OP, as the average zero-temperature OP in
samples �A� and �B�. The reason for such a crucial reduction
of the ratio 2�g /Tp in the presence of many OP scatterers is
the proximity effect. The individual perturbations essentially
interact one with another for the considered concentrations
when the averaged distance between them is less than the
superconducting coherence length. In the framework of the
mean-field treatment the phase of the OP is the same over the
entire sample. For this reason the individual perturbations
raise the pairing correlations in the background and maintain
their own OP even for high enough temperatures in compari-
son to the background critical temperature. This is quite dif-
ferent from the picture of the single perturbation, where the
pairing correlations sharply weaken for the temperatures
higher than Tb.

The discussed behavior of the superconducting OP is de-
picted in Fig. 7. Figures 7�a� and 7�b� correspond to models
�A� and �B�, respectively. The black solid lines represent the

dependence of the site-averaged OP on temperature for the
sites marked by the appropriate numbers in Figs. 5�a� and
6�a�. They correspond to the characteristic OP behavior
along the line from the center of the perturbation to the back-
ground �from top to bottom�. The gray lines illustrate the
temperature dependence of the bulk OP having the same
zero-temperature value as in the center of the chosen pertur-
bation �upper gray curve�, at the chosen site belonging to the
background �bottom gray curve� and as the averaged OP
�middle gray curve�. The dashed line represents the tempera-
ture dependence of the OP, averaged over the entire sample.
Although the curves still exhibit non-BCS shape, there is no
sharp suppression of the superconducting correlations in the
vicinity of the background critical temperature unlike the
single perturbation case. Now, roughly speaking, it is the
critical temperature of the bulk OP, having the same low-
temperature value as the averaged OP �middle gray curve�,
that plays part of the background critical temperature for the
single perturbation: if the OP at a given location is less than
the averaged value, the superconducting correlations for a
finite temperature are higher than the bulk ones correspond-
ing to the same zero-temperature OP, and only for the loca-
tions, where the OP exceeds the average value, the finite-
temperature superconducting correlations are suppressed as
compared to the bulk behavior. This leads to the fact that the
values of Tp�i� are higher than for the single perturbation
case, which in turn results in considerable decrease of the
ratio 2�g /Tp. It is worth noting that in our mean-field treat-
ment we neglect OP phase. However, it is physically reason-
able that the phase of the superconducting OP should fluctu-
ate from one region of enhanced pairing amplitude to another
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FIG. 7. The dependence of the site-averaged OP on temperature
for the sites marked by the appropriate numbers in Figs. 5�a� and
6�a� �black solid lines�. The gray lines are the temperature depen-
dence of the bulk OP having the same zero-temperature value as in
the center of the chosen perturbation �upper gray curve�, at the
chosen site belonging to the background �bottom gray curve� and as
the averaged OP �middle gray curve�. The dotted line represents the
temperature dependence of the OP, averaged over the entire sample.
Panels �a� and �b� correspond to models �A� and �B�, respectively.
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in such an inhomogeneous situation, as it was already men-
tioned in the introduction. We discuss the influence of the
thermal phase fluctuations on the above results in the next
section.

As it was mentioned above, the difference between the
averaged ratio �2�g�i� /Tp�i�� for model �B� and the corre-
sponding homogeneous value is higher than between the
same quantities in model �A�. In addition, the probability
distribution to find the particular value of the ratio has a long
tail of very high values for this model. The ratio is greatly
enhanced for a small part of the sites due to the fact that the
mechanism of the spectral weight transfer from the van Hove
singularity makes the gap considerably larger for this model,
where the van Hove singularity and the bulk coherence peak
are quite distinct, but it only works in the close vicinity of an
individual perturbation. To illustrate this, the LDOS and ther-
mally smeared LDOS calculated according to the expression
�4� at some typical sites are shown in Figs. 8�a� and 8�b� for
model �A�, and Figs. 8�c� and 8�d� for model �B�, respec-
tively. Figs. 8�a� and 8�c� represent the bare LDOS, while
Figs. 8�b� and 8�d� correspond to the thermally smeared
quantity. Please note that the temperatures we use to calcu-
late the thermally smeared LDOS are deeply in the supercon-
ducting state, where the superconducting OP practically does
not differ from its zero-temperature value.

It is seen from the figures that for the most part of sites,
the bare LDOS exhibits two peaks �and also a number of
kinks�. The peak at smaller energies represents a supercon-
ducting coherence peak corresponding to an effective OP.
This effective OP neither coincides with the background
value, as it was for the single perturbation, nor represents the
local OP value. Apparently, its value is close to the average
over some area for the most part of the samples; however

this will be discussed in more detail elsewhere.37 The second
peak at higher energies is usually weaker �except for the
small part of sites in sample �B�� and associated with the
spectral weight transfer from the van Hove singularity due to
Andreev scattering. For the both models the spectral weight
transfer is clearly seen in the bare LDOS, however the two
peaks overlap for model �A� due to the fact that the normal
state van Hove singularity is quite close to the Fermi surface
in this case. As a result the effective superconducting coher-
ence peak and the one transferred from the van Hove singu-
larity merge in the thermally smeared LDOS even for a low
temperature, as it is seen in Fig. 8�b�. The resulting peak
resembles a superconducting coherence peak.

For model �B� the effective superconducting coherence
peak and the peak transferred from van Hove singularity are
more distinct. In this case the effective coherence peak is
higher than the transferred one for a number of sites. How-
ever, they are of the same order for the most part of sites. As
a result the gap position is located somewhere between them
in the low-temperature thermally smeared LDOS. The corre-
sponding curves do not exhibit a pronounced peak and re-
semble the dI /dV behavior observed in underdoped samples
in contrast to model �A� LDOS, which is more similar to
optimally and overdoped samples. Finally, the transferred
peak wins for a small number of sites, typically at centers of
the individual perturbations. This leads to the sharp increase
in the gap for these space locations and, consequently, to the
existence of the long tails in the 2�g /Tp distribution.

D. Effect of weak potential and hopping element
inhomogeneities

It is reasonable to assume that the possible causes of the
pairing interaction inhomogeneities �for example, dopant at-
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FIG. 8. LDOS �panels �a�, �c�, and �e�� and thermally smeared LDOS �panels �b�, �d�, and �f��. For all the figures the black solid curve
represents LDOS at a given site typical for the background, dashed line corresponds to the center of a perturbation, and LDOS somewhere
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LDOS for models �B� and �B�� is obtained at T=0.03.
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oms� most probably also give rise to a disorder of the normal
state parameters. Therefore, let us turn to the discussion of
the additional effect of inhomogeneities of tight-binding pa-
rameters such as chemical potential and hopping matrix ele-
ments on the measured by STM properties. Here we only
focus on a weak inhomogeneity of the chemical potential
	��	� t. Strong potential scatterers characterized by 	��	� t
are well known to give rise to quasiparticle resonant bound
states in the close vicinity of the potential impurity.38 In real
BSCCO system only very small part of in-plane native de-
fects exhibits near-zero bias resonances, so they should not
influence considerably the statistical properties studied here,
such as the 2�g /Tp distribution.

To illustrate the influence of this additional disorder we
have chosen our model �B�, where the nearest-neighbor hop-
ping element is taken to be t+�t, the next-nearest neighbor
equals to t�+�t�, and the chemical potential is �+�� for the
plaquettes corresponding to the enhanced pairing interaction.
Here we take �t=0.50, �t�=0.15, and ��=−0.25. This model
is referred to as �B��.

The LDOS and low-temperature thermally smeared
LDOS for model �B’� are shown in Figs. 8�e� and 8�f�, re-
spectively. As it is seen in the figures the low-energy part of
the curves is practically not affected by the potential and
hopping matrix element disorder. Only the high energy part
and, especially, the region of the van Hove singularity are
distorted by this type of scatterers. The van Hove singularity
becomes less pronounced under the influence of the addi-
tional disorder: more widened and reduced in height. This is
natural because in the homogeneous situation the change of
tight-binding parameters strongly shifts the energy location
of the van Hove singularity. It is worth to note that for the
models, where the normal state van Hove singularity is more
close to the Fermi energy �similar to the model �A� we con-
sider�, the effect of the diagonal scatterers on the LDOS is
even weaker, because the van Hove singularity is absorbed
by the superconducting coherence peak and the resulting
peak is not qualitatively sensitive to the discussed types of
disorder, as it was shown in Ref. 18 for the case of weak
potential disorder.

To investigate the influence of the discussed additional
disorder on the properties of interest here, we compare the
OP, gap, and Tp space distributions for models �B� and �B��.
The correlation between the OP space distributions in model
�B� and �B�� is demonstrated in Fig. 9�a�. The horizontal axis
represents the value of the superconducting OP in model �B�,
while the vertical axis corresponds to this value for model
�B��. Each point with the coordinates ���B� ,��B��� represents
the values of the superconducting OP for a given site i in
models �B� and �B��. The line is the linear fit ��B��

=1.01��B� to these points. It is seen that the points are de-
scribed by this fit very well, so the additional disorder prac-
tically does not affect the superconducting OP.

At the same time the gap and Tp distributions are influ-
enced by the potential and hopping scatterers, as it is seen in
Figs. 9�b� and 9�c�, respectively. The reason is that the gap is
�at least partially� determined by the LDOS peak originated
from the spectral weight transfer from the van Hove singu-
larity by Andreev scattering processes, while, as it was dis-

cussed above, the van Hove singularity is affected quite
strongly by the potential and hopping disorder. Nevertheless,
the correlations between the low-temperature gaps and Tp in
models �B� and �B�� can be still fitted by a linear depen-
dence, which indicates the fact that the corresponding gap
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FIG. 9. �a� The correlation between the OP space distributions in
models �B� and �B��. Each point with the coordinates ���B� ,��B���
represents the values of the superconducting OP for a given site i in
models �B� and �B��. The line is the linear fit ��B��=1.01��B� to
these points. �b� Analogous correlation between the low-
temperature �T=0.03� gaps in the considered models. The points are

fitted by the liner dependence �g
�B��=0.69�g

�B�+0.18. �c� The corre-

lation between Tp. The linear fit is Tp
�B��=1.42Tp

�B�−0.06. �d� The
histograms for 2�g /Tp distributions. The upper histogram corre-
sponds to model �B��, while the bottom is related to model �B�. The
offset is for clarity.
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maps do not change qualitatively under the influence of such
a disorder, but only distorted to a certain extent. The average
values of the low-temperature gap and Tp also differ very

slightly for models �B� and �B��: ��g
�B���=0.50 and �Tp

�B���
=0.17, while ��g

�B��=0.47 and �Tp
�B��=0.16.

The distributions of the ratio 2�g /Tp for models �B� and
�B�� are compared in Fig. 9�d�. The average value of the
ratio is again affected by the potential and hopping disorder
only slightly: �2�g /Tp�=5.8 for model �B�� and �2�g /Tp�
=5.6 for model �B�, although the disorder results in widening
of the distribution.

At the end of the discussion of the potential and hopping
disorder effect we would like to note that the considered set
of parameters here is just a representative example. We have
studied a number of other weak potential and hopping disor-
der configurations and found that their effect qualitatively the
same. Although the particular values for the potential and
hopping disorder parameters and their relationship to the pair
disorder strength can be only established in the framework of
certain microscopic models, our analysis indicates that they
do not qualitatively influence the physics discussed in the
present paper.

III. THERMAL PHASE FLUCTUATIONS: A TOY MODEL

The above-considered mean-field approximation seems to
be physically not quite appropriate for studying the state,
which is inhomogeneous on the atomic scale, especially in
view of short coherence length in cuprate materials. It is
reasonable to assume that the phase of the superconducting
OP should fluctuate from one region of enhanced pairing
amplitude to another in such an inhomogeneous situation.
This can significantly suppress the temperature Tp and, con-
sequently, increase the ratio 2� /Tp. The regular consider-
ation of the state with inhomogeneous pairing interaction
beyond the framework of mean-field approximation, which
takes into account thermal phase fluctuations, is a separate
problem. So we postpone it for a future publication. To show
that the thermal phase fluctuations indeed systematically sup-
press Tp, in the present paper we study their effect in the
framework of a toy model.

While in the mean-field approximation the phase of the
superconducting OP is the same over the entire sample, we
assume that it only remains constant over the region �l2

around an individual perturbation, where l is an average dis-
tance between the perturbations. The value of the phase in
the vicinity of a perturbation centered at a site i for a given
temperature T is set by hand according to the formula
�T�i�, where �i� is a random number belonging to the
interval �−� /2,� /2�, and � is a coefficient accounting for
the strength of the fluctuations. As it is seen from the above
expression the phases at different perturbation regions are
partially correlated for low enough temperatures, and the
variation rises with temperature modeling the effect of the
thermal fluctuations. The particular law of increasing the
fluctuations with rising temperature �linear in the considered
model� is not very important. Anyway, the main effect of the
thermal phase fluctuations is to suppress Tp considerably.
The reason for this is that they partially destroy the proxim-

ity effect between different perturbation regions thus shifting
the physical properties in the vicinity of a given pair scatterer
to the limit of an independent single perturbation.

To demonstrate the above-discussed effect in the frame-
work of our toy model, in Figs. 10�a� and 11�a� we plotted
the part of the sample gapped at a given temperature as a
function of temperature for models �A� and �B�, respectively.
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FIG. 10. �a� The part of the sample gapped at a given tempera-
ture as a function of temperature. The black solid line corresponds
to the mean-field results, the dashed line demonstrates the effect of
weak enough fluctuations described by �=5, and the dotted line is
related to more stronger fluctuations with �=10. �b� The influence
of the fluctuations on the 2�g�i� /Tp�i� distribution. The bottom his-
togram is calculated for the mean-field sample, while the middle
one is for the weaker fluctuations with �=5 and the upper distribu-
tion corresponds to �=10. All the results are related to model �A�.
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FIG. 11. The same results as in Fig. 10, but calculated for model
�B�.
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The black solid line in Fig. 10�a� �Fig. 11�a�� represents the
results for the pure mean-field model �A� ��B�� without phase
fluctuations, the dashed lines demonstrate the effect of weak
enough fluctuations corresponding to �=5 and the dotted
lines are related to more stronger fluctuations with �=10. It
is seen that the increase in the fluctuation strength � monoto-
nously suppresses Tp.

Figures 10�b� and 11�b� represent the influence of the
fluctuations on the 2�g /Tp distributions for models �A� and
�B�, respectively. The bottom histograms correspond to the
mean-field samples, while the middle ones are related to the
weaker fluctuations with �=5, and the upper distributions
are calculated for the more stronger fluctuations modeling by
�=10. It is clearly seen for both models the increase of the
phase variation monotonously shifts the distribution to more
higher values without considerable changing of its shape.
The average values of the ratio 2�g /Tp corresponding to all
the histograms are represented in the Table I. It is worth to
note that the average ratios corresponding to the stronger
fluctuations with �=10 �last column in Table I� are in excel-
lent agreement with the appropriate ratios for the single per-
turbations. This points to the fact that these fluctuations sup-
press the proximity effect between neighbor enhanced
pairing regions quite efficiently, so that the limit of single
perturbation is practically reached for an individual perturba-
tion region.

The results demonstrated in Figs. 10 and 11 and Table I
are calculated for a given random realization of the param-
eters �i�. Having studied a number of random realizations
of these parameters, we found that the absolute error in de-
termining the average ratio �2�g /Tp� is �0.2.

IV. ANTICORRELATION BETWEEN LOW-
TEMPERATURE GAP AND HIGH-TEMPERATURE ZERO-

BIAS CONDUCTANCE

As it was shown above, one of the characteristic features
of the model with the atomic-scale inhomogeneity of the
superconducting OP is the considerable enhancement of the
ratio 2�g /Tp as compared to the homogeneous case. In this
section we would like to discuss another characteristic mani-
festation of the OP inhomogeneity in the spectra measured
by STM. It was recently reported26 that the value of the
low-temperature position-dependent gap obtained from the
STM spectra strongly anticorrelated with the value of zero-
bias differential conductance at a temperature, where practi-

cally the entire sample is ungapped. One of possible expla-
nations for this experimental observation can be naturally
given in the framework of the inhomogeneous OP model.

Figure 12 demonstrates the low-temperature gap-map
�panel �a�� in comparison to the maps of high-temperature

TABLE I. The values of the ratio �2�g /Tp� for all the histo-
grams shown in Figs. 10�b� and 11�b�. The first column corresponds
to the mean-field results, while the second and third ones represent
their shift under the influence of weak and strong fluctuations, re-
spectively. The middle row is related to model �A�, and correspond-
ingly to Fig. 10�b�. The bottom one contains the average ratios for
model �B� and, consequently, for the histograms in Fig. 11�b�.

� 0 5 10

�A� 5.4 6.5 7.6

�B� 5.6 6.9 8.6
0.28

0.67

0.50

∆g

(a)

0.11

0.25

(b)

0.17

0.26

(c)

0.26

0.20
(d)

FIG. 12. �a� The low-temperature �T=0.05� gap map for model
�A�. �b�–�d� The zero-bias space distributions of the thermally-
smeared LDOS for the same model: �b� T=0.15, �c� T=0.19, and
�d� T=0.21.
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zero-bias thermally smeared LDOS �panels �b�–d��. All the
maps correspond to the above-considered model �A� in the
mean-field approximation. High-temperature zero-bias ther-
mally smeared LDOS is calculated according to the formula
�4� at V=0 for three different temperatures: the results for
T=0.15, where 80% of the sample are still gapped, are
shown in panel �b�, while panel �c� is related to T=0.19,
where only 2% of the sample are gapped, and panel �d� cor-
responds to T=0.21, where the entire sample is already un-
gapped. The anticorrelation between the maps in panel �a�
from one hand and the maps in panels �b�–�d� is clearly seen.
Figure 13�a� further quantifies this anticorrelation. High-
temperature zero-bias thermally smeared LDOS, measured
along the vertical axis, versus low-temperature gap �horizon-
tal axis� is plotted in this figure for all the sites of our
sample.

As it was described above in detail, the atomic-scale OP
inhomogeneity leads to the fact, that the difference between
the temperature of vanishing the gap Tp�i� and the tempera-
ture of disappearing the pair correlations, which corresponds
to the critical temperature Tx in the mean-field treatment, is
considerably higher for the inhomogeneous situation as com-
pared to the homogeneous case. The temperature evolution
of thermally smeared LDOS from T=0.15 to T=0.21 is dem-
onstrated in Figs. 13�b�–13�d� for three typical space loca-
tions. Only very small part of the sample exhibits the behav-
ior shown in panel �b�, while approximately 2/3 of the
sample can be described by panel �c�, and the behavior of the
conductance for the last 1/3 of the sites corresponds to panel
�d�.

That is, although practically the entire sample is ungapped
at T=0.19 for our model �A� and the conductance curves
change only slightly or practically do not change under fur-
ther increasing in the temperature, the value of the supercon-
ducting OP is not small for the most part of the sample at this
temperature �see Fig. 7�a��. Even the complete vanishing of
the gap at T=0.21 does not mean that there are no pair cor-
relations in the system. The presence and the strength of the
pair correlations is reflected in the suppression of the low-
energy LDOS. It is clearly seen in Figs. 12�a�–12�d� and
13�a� that the anticorrelation weakens with temperature. It is
rather weak at T=0.21, where the pair correlations are small,
and should disappear in the framework of our model when
the pair correlations entirely vanish. We believe that this sce-
nario should also work if one takes into account the thermal
phase fluctuations because the same physical picture is valid
for the single perturbation as well. However, a regular theory
is needed for a detailed consideration of this problem.

V. CONCLUSIONS

We have studied the influence of the atomic-scale inho-
mogeneities of the superconducting OP on the conductance
spectra measured by STM. First of all, it is found that the
ratio of the local low-temperature gap in differential conduc-
tance spectra to the local temperature of vanishing the gap
2�g /Tp can take large enough values as compared to the
homogeneous OP model. While in the framework of the
mean-field approximation the ratio does not strongly differs

from the homogeneous one; the thermal phase fluctuations
considerably enhance it. At least in the framework of a very
simplified model we obtained that the ratio 2�g /Tp can reach
the values �7–8, which are comparable to the experimental
ones. It is also demonstrated that the additional weak poten-
tial scatterers and hopping matrix element disorder do not
influence qualitatively the above results. Second, the atomic-
scale OP inhomogeneity results in the anticorrelation be-
tween the low-temperature gap and the high-temperature
zero-bias conductance, bearing a resemblance to the recent
results obtained by STM.
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FIG. 13. �a� High-temperature zero-bias thermally-smeared
LDOS, measured along the vertical axis, versus low-temperature
gap �horizontal axis� for all the sites of the sample at three different
temperatures: T=0.15, T=0.19, and T=0.21. �b�–�d� The tempera-
ture evolution of thermally smeared LDOS for three typical space
locations. T=0.15 �solid black lines�, T=0.19 �dashed lines� and
T=0.21 �dotted lines�. All the panels are related to model �A�.
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